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Abstract

Classic heterotaxy consists of congenital heart defects with abnormally positioned thoracic and 

abdominal organs. We aimed to uncover novel, genomic copy-number variants (CNVs) in classic 

heterotaxy cases. A microarray containing 2.5 million single-nucleotide polymorphisms (SNPs) 

was used to genotype 69 infants (cases) with classic heterotaxy identified from California live 

births from 1998 to 2009. CNVs were identified using the PennCNV software. We identified 56 
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rare CNVs encompassing genes in the NODAL (NIPBL, TBX6), BMP (PPP4C), and WNT 

(FZD3) signaling pathways, not previously linked to classic heterotaxy. We also identified a CNV 

involving FGF12, a gene previously noted in a classic heterotaxy case. CNVs involving RBFOX1 
and near MIR302F were detected in multiple cases. Our findings illustrate the importance of body 

patterning pathways for cardiac development and left/right axes determination. FGF12, RBFOX1, 

and MIR302F could be important in human heterotaxy, because they were noted in multiple cases. 

Further investigation into genes involved in the NODAL, BMP, and WNT body patterning 

pathways and into the dosage effects of FGF12, RBFOX1, and MIR302F is warranted.

Introduction

Classic heterotaxy is a complex congenital disorder characterized by an abnormal 

arrangement of the internal organs across the left/right axis with at least one major heart 

defect. Heterotaxy is associated with primary ciliary dyskinesia (PCD), a rare lung disorder 

caused by mutations in DNAI1 and DNAH5 (Kennedy et al. 2007). The range of heterotaxy-

associated phenotypes has been previously described in detail (Zhu et al. 2006). Classic 

heterotaxy is estimated to occur in 1 in 10,000 live births (Lin et al. 2014). Heterotaxy 

accounts for roughly 3 % of all congenital heart disease (CHD) cases (Zhu et al. 2006). 

There are conflicting results with regard to whether the risk is increased for Asians (Rigler et 

al. 2015), African Americans (Lin et al. 2014), or Hispanics (Rigler et al. 2015). Recurrence 

in families and a 2:1 male-to-female prevalence in some studies (Ferencz et al. 1997; Lin et 

al. 2014) suggest a genetic component.

Heterotaxy is associated with primary ciliary dyskinesia (PCD), a rare disorder of the 

respiratory tract, caused by more than 30 genes (Kurkowiak et al. 2015; Lobo et al. 2015), 

including DNAI1 and DNAH5 (Kennedy et al. 2007). Several genes have been linked to 

human laterality disorders (Kennedy et al. 2007; Sutherland and Ware 2009; Zhu et al. 

2006), including mutations in the transforming growth factor-β (TGF-β) family involved in 

the NODAL signaling pathway (Shen 2007). Other genes have been identified through their 

association with PCD and influence on ciliary structure and function. However, known genes 

account for only approximately 10–20 % of sporadic cases of heterotaxy (Fakhro et al. 2011; 

Sutherland and Ware 2009). Animal studies have identified numerous laterality genes 

indicating the likelihood of additional human laterality genes (Zhu et al. 2006). Furthermore, 

the role of copy-number variants (CNVs) in heterotaxy has received little attention (Fakhro 

et al. 2011; Rigler et al. 2015). The goal of the present study was to determine whether 

additional CNVs are involved in classic heterotaxy.

Materials and methods

Cases

Heterotaxy cases were identified via the California Birth Defects Monitoring Program’s 

(CBDMP’s) population-based, active ascertainment birth defects registry. The methods have 

been described in detail previously (Croen et al. 1991). In brief, trained staff collected 

diagnostic and demographic information. Each diagnosis was assigned a code from the 
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CBDMP Six Digit Code. A study performed on the CBDMP registry determined that the 

completeness of ascertainment exceeded 93 % (Schulman and Hahn 1993).

Heterotaxy cases were identified from all live births (N = 761,860) from 1998 to 2009 with 

maternal residence in a San Joaquin Valley County, excluding births at military facilities. All 

the cases with heterotaxy [British Paediatric Association (BPA) codes 759.300–759.390, 

746.805] and at least one other heart defect (BPA 745.000–747.499) were identified. We 

hypothesized that using a restrictive definition of heterotaxy would enable us to identify 

recurring and potentially causal CNVs without confounding by cases with other genetic 

abnormalities or syndromes. Situs inversus totalis is not associated with CHD and, therefore, 

was excluded. Heterotaxy cases with associated aneuploidy, additional genetic syndrome or 

another major, non-heterotaxy associated malformation, e.g., diaphragmatic hernia, oral 

cleft, and multiple dysmorphic features were excluded from study. We also excluded any 

cases of PCD because it has already been linked to over 30 genes; genetic causes have been 

identified for approximately two thirds of cases (Kurkowiak et al. 2015), and it is uncertain 

that the remaining cases have a genetic cause. We wanted to explore conditions that 

remained unexplained. A total of 132 cases of heterotaxy were reviewed, 82 cases met the 

inclusion criteria, and 69 could be matched to newborn dried blood spots (DBS) for the 

DNA analysis.

To ensure that the identified CNVs were not present in the unaffected population, we 

investigated frequencies of the identified CNVs validated in the cases in an unaffected group 

of infants. We randomly selected 165 infants without birth defects who derived from the 

same population (county and year of birth) as the cases, obtained their bloodspots, and 

performed qPCR copy-number assays using at least one probe per CNV region.

Vital records data were obtained and analyzed using Fisher’s exact test or t test. Prior to 

genotyping and analysis, cases were given a random identification number and all personally 

identifying information was removed. The California Department of Public Health (IRB 

13-03-1164), the New York State Department of Health (IRB 07-007), and the NIH Office of 

Human Subjects Research (OHSRP 11631) reviewed and approved this study.

CNV detection, selection, and validation

The 69 cases, 10 controls, and one HapMap sample were batched and genotyped along with 

one sample and a trio in duplicate taken from an unrelated project. The methods have been 

described previously (Rigler et al. 2015). In brief, samples were genotyped using the 

Illumina HumanOmni2.5-8_v1-1_B bead arrays and the Infinium LCG assay protocol. The 

mean sample call rate ± SD (range) was 99.73 ± 0.005 (95.50–99.91). The mean log R ratio 

deviation was 0.116 ± 0.024 (0.088–0.201). Single nucleotide polymorphism genotype 

reproducibility was 100 % for the unaffected controls and 99.99 % for the trio. A total of 

2,284,686 autosomal markers were included in the CNV analysis. CNVs were called and 

annotated using the Illumina’s cnvPartition algorithm (version 3.2.0) and PennCNV (version 

2011/05/03). For additional information, see the Supplementary Materials and Methods.

Copy number variants were excluded if they were shorter than 20 kb, contained fewer than 

ten SNP probes, overlapped more than 35 % with common CNVs in Hap-Map or CHOP, or 

Hagen et al. Page 3

Hum Genet. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overlapped more than 50 % with similar-type CNVs in an in-house reference CNV database 

compromised of unaffected controls and cases of other unrelated birth defects. The 

remaining CNVs were uploaded to DGV (build37/hg19, DGV release date 2014-10-16, and 

date accessed 2014-10-28) and analyzed for overlap. A CNV was selected for further 

analysis if it had less than 50 % overlap with variants present in DGV or if the CNV 

encompassed a gene in the non-overlapped region. Although the DGV is a very valuable 

resource, some studies in the database have very small sample sizes and all could potentially 

include false positives. Furthermore, some methods of CNV detection, such as BAC arrays, 

are known to overestimate the start and end points of CNVs. For these reasons, we chose to 

ignore overlap with variants represented by thin lines (denoting low confidence) in the DGV 

browser and overlap with variants from studies using similar methods. A study that included 

subjects with cardiovascular defects was also excluded.

Copy number variants with poor B-allele frequency/log R ratio scatterplot data quality (poor 

likelihood to validate) were excluded from further analysis. The remaining CNVs were 

considered candidate CNVs for heterotaxy. Of the 58 identified CNVs, 19 were prioritized 

for validation based on whether they were present in multiple subjects, contained 

biologically relevant genes, or overlapped CNVs that had been previously reported in 

heterotaxy cases. Studies were performed using two to three quantitative real-time 

polymerase chain reaction (qPCR) TaqMan assays (Applied Biosystems, Carlsbad, CA, 

USA) per region. Validations were performed as previously described (Rigler et al. 2015). 

For further details, see Supplementary Materials and Methods. One probe was excluded due 

to discordant results obtained when retesting multiple samples with low confidence calls 

(Supplemental Table 1). All assays were tested in each of the 69 heterotaxy cases and 10 

control subjects. We subsequently screened all validated CNVs against an additional 165 

control samples from unaffected California births using at least one assay targeting each area 

of interest. Therefore, a total of 175 unaffected controls were screened using at least one 

assay in each candidate CNV region.

Known heterotaxy gene screening

A custom AmpliSeq panel (Life Technologies, Carlsbad, CA) was used to screen for 

mutations in the following genes: ACVR2B, NODAL, FOXH1, ZIC3, CFC1, NKX2-3, 
CRELD1, LEFTY2, SESN1, GDF1, KTU, RPGR, TXNDC3, DNAH11, DNAI2, DNAI1, 
DNAH5, FOXI2, NKX6-2, and GJA1 (Supplemental Table 2). The genes were chosen based 

on evidence that they were associated with heterotaxy or PCD. The panel was run on an Ion 

Torrent platform as previously described (Rigler et al. 2015). For further details, see 

Supplementary Materials and Methods. Due to poor coverage, we chose to exclude CFC1 

mutations from the analysis. The selected mutations are summarized in Table 1.

Results

Of the 761,860 live births, 82 met our case definition with a birth prevalence of 1 in 9300 

live births. Cases were statistically more likely to be born to Asian mothers (13.4 vs. 6.8 %; 

P = 0.0158), but not statistically more likely to be born to African–American (7.4 vs 4.6 %; 

P = 0.2247) or Hispanic (50.6 vs 58.8 %; P = 0.1359) mothers (Table 2). Mothers with less 
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than a high school education had an increased risk for having an infant with classic 

heterotaxy (67.9 vs 35.1 %; P < 0.0001). Infants with classic heterotaxy were more likely to 

be of a lower birth weight (mean of 2973 vs. 3327 g; P < 0.0001), but surprisingly, no 

significant difference was seen for gestational age (mean of 266 vs. 269; P = 0.2949). This 

conflicts with the previous reports (Lin et al. 2014; Rigler et al. 2015). No statistical sex 

difference was observed between the cases and the controls (59.8 vs. 51.1 % male, 

respectively; P = 0.1162).

PennCNV identified 6085 CNVs in the primary microarray analysis. After the initial round 

of exclusions outlined in the Methods, 56 candidate CNVs from 38 cases remained. We 

prioritized 19 of the 56 CNVs for validation and further investigation. Using qPCR, 14 

CNVs validated as duplications, three as heterozygous deletions, and two did not validate 

(false positive CNV call from microarray data). The predicted CNVs ranged in size from 21 

to 840 kb. The validated CNVs are described in more detail in Table 3. Candidate CNVs not 

selected for qPCR validation are listed in Supplemental Table 4. No pattern of cardiac 

defects was seen in the 38 cases with candidate CNVs (Table 4).

In individual case infants, we identified rare CNVs involved in NODAL, BMP, FGF, and 

WNT body patterning pathways. These CNVs included an 840 kb duplication at 5p13.2 

involving NIPBL, a gene that influences lefty-2 expression in zebrafish (Muto et al. 2011); a 

617 kb deletion at 16p11.2 encompassing PPP4C and TBX6, genes linked to BMP and 

NODAL signaling (Hadjantonakis et al. 2008; Jia et al. 2012), respectively; a 120 kb 

duplication at 8p21.1 spanning FZD3, a gene that activates the planar cell polarity (PCP) 

pathway of WNT signaling (Komatsu and Mishina 2013); and a 22 kb duplication at 3q29, 

overlapping FGF12, a gene overlapped by a CNV in a previous heterotaxy cohort our group 

studied (Rigler et al. 2015).

We also identified a 29–37 kb duplication at 6p12.1 in two cases. This duplication was 

upstream of ZNF451, a zinc finger protein that likely interacts with Smad4, a key player in 

the BMP and TGF-β-signaling pathways (Feng et al. 2014). Two additional cases carried an 

approximately 370 kb duplication at 16p13.3, involving RBFOX1, a gene encoding an RNA-

binding protein expressed in the heart (Kuroyanagi 2009). Another CNV, duplicated in one 

case, overlapped MIR302F, a micro-RNA whose function has not been determined. Two 

additional deletions in this region were detected during validations.

Finally, we identified three CNVs, two duplications, and one heterozygous deletion, which 

overlapped with CNVs reported in a previous heterotaxy cohort (Fakhro et al. 2011). In all 

cases, the CNVs detected were smaller than previously noted, providing a more focused 

region of interest. We detected a 36 kb duplication at 2q37.3, a 230 kb duplication at 

18p11.21, and a 27 kb heterozygous deletion at 8p23.2.

Discussion

Establishing the left axis/right axis is essential for normal organogenesis and provides the 

basis for correct heart looping (Srivastava and Olson 2000). However, the exact mechanisms 

that establish this asymmetry and drive heart development and differentiation are still largely 
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unknown. The current data on laterality disorders underscore the importance of nodal cilia 

and leftward nodal flow in the developing embryo for these processes. NODAL, BMP, 

WNT, and FGF signaling are significant factors in left/right axis determination and cardiac 

development in multiple animal models (Rochais et al. 2009; Shiraishi and Ichikawa 2012). 

Our current study identified several rare CNVs in humans, encompassing genes involved in 

these critical signaling pathways.

The establishment of the left–right body axis in most vertebrates begins with the creation of 

leftward nodal flow. Nodal flow contributes to the asymmetrical expression of Nodal 
(Komatsu and Mishina 2013). Our analysis identified a duplication at 5p13.2 that overlapped 

NIPBL, a gene linked to NODAL signaling. In zebrafish, knockdown of nipbla/b results in 

heart and laterality defects. Nipbla/b mutants exhibit reduced expression of several genes 

linked to NODAL signaling, such as lefty-2, as well as reduced expression of dnah9, a gene 

that encodes a protein necessary for cilia motility in Kupffer’s vesicle, a structure analogous 

to the mouse node (Muto et al. 2011). In humans, NIPBL has been linked to Cornelia de 

Lange syndrome, which is associated with CHD.

A deletion in 16p11.2 in one case encompassed TBX6. TBX6 regulates Delta-like 1 (Dll1), 
a Notch ligand that is upstream of Nodal. Thus, TBX6 may influence both the Notch- and 

NODAL-signaling pathways. Tbx6 null mice exhibit abnormal heart looping and are 

characterized by nodal cilia that are abnormal in both structure and motility (Hadjantonakis 

et al. 2008). TBX6 is a member of the T-box family of transcription factors that act as 

transcriptional repressors or activators and play key roles in development. TBX1 is 

associated with the heart defects present in 22q11.2 deletion syndrome (Yagi et al. 2003).

A second gene, PPP4C, was found in the same deletion as TBX6. PPP4C encodes the 

catalytic subunit of PPP4, a serine/threonine phosphatase member of the PPP family. Ppp4 

regulates a variety of cellular functions, including transcriptional and replication activities of 

chromatin (Cohen et al. 2005). In zebrafish, ppp4c knockdown results in increased 

embryonic dorsalization and decreased ventralization (Jia et al. 2012). Furthermore, Ppp4c 

has been demonstrated to bind to Smad1/Smad5, regulating the BMP signaling pathway 

during dorso-ventral patterning (Jia et al. 2012). BMP signaling genes have previously been 

linked to human heterotaxy (Rigler et al. 2015). In animal studies, Bmp signaling has been 

shown to influence left/right patterning and Nodal expression (Smith et al. 2011). A similar 

microdeletion was identified in a pair of identical twins with aortic valve abnormalities 

(Ghebranious et al. 2007).

We identified a duplication at 6p12.1 upstream of ZNF451, in two cases. ZNF451 is a 

member of the zinc finger protein family and is a transcriptional cofactor. ZNF451 binds to 

Smad4, forming a complex with Smad2 and Smad3, key components of the TGF-β signaling 

pathway (Feng et al. 2014). Both NODAL and members of the BMP family belong to the 

TGF-β superfamily.

WNT signaling also plays a role in embryonic patterning and cardiogenesis. WNT signaling 

can be grouped into three pathways, each involving specific frizzled receptors. We identified 

a duplication in 8p21.2 overlapping FZD3, a gene that encodes one of the frizzled receptors 
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that activates the PCP pathway. The PCP pathway has been implicated in embryonic 

narrowing and elongation (convergent extension), cell migration, and determination of cell 

fate (Vladar et al. 2009). In mice, the PCP pathway influences the positioning and 

orientation of nodal cilia, thereby influencing nodal flow (Komatsu and Mishina 2013).

Interestingly, we detected a duplication in 3q29 overlapping FGF12, a gene deleted in an 

individual in our previous heterotaxy cohort (Rigler et al. 2015). Animal studies have 

implicated members of the FGF family in several key developmental processes, including 

cilia development, Nodal-dependent endoderm induction, and specification of the early 

cardiac mesoderm (Mizoguchi et al. 2006; Neugebauer et al. 2009; Rochais et al. 2009). 

However, FGF12 belongs to the FGF homologous factor subfamily, which unlike other 

members of the FGF family, does not bind to FGF receptors. In mice, fgf12 is expressed in 

the myocardium of the developing heart (Hartung et al. 1997). Thus, further investigation is 

required to determine how this variant is related to cardiac and laterality defects.

A duplication in 16p13.3 involving RBFOX1 was found in two cases. RBFOX1 is a member 

of the Fox-1 family of RNA-binding proteins in mammals. RBFOX proteins are involved in 

alternative splicing, which influences gene expression during embryonic development and 

differentiation (Kuroyanagi 2009). Knockdown of rbfox1 l and rbfox2 in zebrafish embryos 

results in cardiac muscle defects (Gallagher et al. 2011). Partial deletions of RBFOX1 have 

been previously identified in infants with complex congenital heart defects (Lale et al. 2011; 

Li et al. 2012), and 16p13.3 has been noted as a candidate locus for heart malformations 

(Geng et al. 2014). In addition to the partial duplication of RBFOX1, Case 10 had a 

homozygous DNAH11 mutation predicted to alter splicing (Table 1). DNAH11 mutations 

are associated with heterotaxy; however, it is not known if this point mutation is pathogenic.

We also noted a 184 kb duplication in 18q12.1 encompassing MIR302F. Partially 

overlapping deletions were detected in two additional cases during validations. The 

additional cases were detected as heterozygous delections at probe Hs06501555_cn during 

qPCR validations; although breakpoints of the deletions cannot be estimated, 

Hs06501555_cn is 1.4 Kb from MIR302F. Little is known about MIR302F, but studies using 

synthetic human MIR302 (MIR302a-d) showed targeted inhibition of LEFTY1 and 

LEFTY2, two key genes in the NODAL signaling pathway (Rosa et al. 2009). It is possible 

that MIR302F has a similar role to the other members of the MIR302 family and could 

influence NODAL signaling genes.

Three of the CNVs we found overlap CNVs found in a previous heterotaxy cohort (Fakhro 

et al. 2011). The first, a duplication in 2q37.3, encompassed CXXC11, a member of the 

receptor transporter protein family. Little is known about this family of proteins. A second 

duplication, in 18p11.21, overlapped FAM210A and LDLRAD4. Like CXXC11, there is a 

lack of research on FAM210A and LDLRAD4. LDLRAD4 (also known as C18ORF1) has 

been shown to inhibit TGF-β signaling in a dose-dependent manner (Nakano et al. 2014). 

This case also had a heterozygous nonsynonymous mutation in NODAL that was previously 

reported as pathogenic (Mohapatra et al. 2009). It is possible that both the NODAL mutation 

and the duplication in 18p11.21 are contributing to the individual’s phenotype. The third 

CNV, a deletion in 8p23.2, did not encompass any genes. In addition to Fakhro et al. (2011), 
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another CNV investigation identified a duplication in 8p23.2 in an individual with tetralogy 

of Fallot (Campos et al. 2015). In addition to the deletion in 8p23.2, this case had three 

exonic heterozygous mutations in DNAH11 (Table 1), all with unknown significance. It is 

possible that these point mutations are nonpathogenic or that both these mutations and the 

deletion of 8p23.2 are contributing to heterotaxy in this individual. In all three cases, our 

identified CNVs were smaller than those noted by Fakhro et al. (2011), narrowing the 

critical region. Two duplications that validated in single cases (3p21.31 and 12p13.33) were 

each found in a control subject. In both cases, 3 and 11, sequence variants were also 

identified (Table 1). Case 3 had a heterozygous FOXI2 mutation that was predicted to be 

pathogenic by both PolyPhen and SIFT. FOXI2 is a gene deleted in an individual in our 

previous heterotaxy cohort (Rigler et al. 2015). Case 11 had two nonsense DNAH5 
mutations. Mutations in DNAH5 are known to cause PCD. It is possible that the duplications 

in these subjects are nonpathogenic and the gene mutations are the cause of heterotaxy. 

Alternatively, both the duplications and the gene mutations may contribute to a 

multifactorial inheritance of heterotaxy.

Multifactorial inheritance of heterotaxy has been suggested (Sutherland and Ware 2009). 

Heterozygous mutations in PCD genes have been seen in heterotaxy cases with PCD 

(Nakhleh et al. 2012). Functional validation of a trans-heterozygous interactions provides 

support of an oligogenic model of heterotaxy (Li et al. 2016). Results of our combined 

sequence and CNV analysis could support multigenic inheritance of heterotaxy. Fifteen of 

38 heterotaxy cases studied carried both a candidate CNV and a sequence variant 

(Supplemental Table 5). As the majority of the sequence variants we identified were 

heterozygous, it is possible that both the sequence variants and the candidate CNVs are 

contributing to heterotaxy.

This is only the second population-based study of classic heterotaxy (Rigler et al. 2015). By 

excluding a variety of isolated abnormalities, we hoped to uncover CNVs seen in multiple 

cases that were not associated with a secondary phenotype. We were also able to analyze 

demographic characteristics associated with heterotaxy, noting an increased prevalence 

among Asians. Cases were also more likely to be lower birth weight and born to mothers 

with less than a high school education. Interestingly, cases were no more likely to be born at 

an earlier gestational age.

This study has several strengths and weaknesses. Because it is a population-based study, we 

know that we have a representative set of cases. The data available through the CBDMP 

registry have been collected and coded by well-trained staff and has excellent and unbiased 

ascertainment of cases. We also validated 17 CNVs and additional point mutations, ensuring 

that no false positives are present in our final candidate heterotaxy-associated CNV list. Our 

CNV selection criteria included filtering against the DGV database to assure that the 

detected CNVs were absent or rare in normal subjects. Furthermore, to rule out the CNVs 

specific to our population, we screened the CNVs in 175 control subjects from the California 

population. Due to the nature of the CNV validation method (TaqMan Copy-number assays), 

we are unable to determine the exact breakpoints of CNVs. However, if a single probe for a 

given CNV was detected in a control subject, we tested the other probes spanning the region 

in that control subject to determine minimum predicted overlap. Using one assay per CNV 
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region, we are effectively ruling out the presence of CNVs with breakpoints matching those 

detected in the cases in the 175 control subjects. There were limitations to our case 

identification, as cases were reported from live births and losses or terminations would be 

missed. Cases can also be missed or excluded based on non-reporting or incorrect coding. 

Because cases were ascertained and DNA obtained from a large, population-based newborn 

cohort, it was not possible to obtain data or DNA from parents to determine whether CNVs 

were inherited or de novo mutations. This was a CNV/gene finding study that we hope will 

provide leads for future triad and model organism studies. In addition, determining the 

clinical relevance of CNVs can be challenging due to the potential inaccuracies in mapping 

breakpoints and difficulty in estimating CNV frequency.

In conclusion, we identified several CNVs that included genes linked to body patterning not 

previously found in human heterotaxy cases, including NIPBL, TBX6, PPP4C, FZD3, and 

ZNF45. CNVs involving RBFOX1 and near MIR302F were seen in more than one case, 

indicating potential importance in human heterotaxy. We also replicated associations 

between heterotaxy and FGF12 (Rigler et al. 2015) and 2q37.3, 8p23.2, and 18p11.21 

(Fakhro et al. 2011) mutations in an independent population. These genes could be 

investigated further by sequencing or analyzing genes in the related pathways. Our study 

provides more evidence that mutations in body patterning genes are implicated in classic 

heterotaxy and, therefore, merit additional investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 2

Select demographic characteristics of heterotaxy cases and the California reference population

Characteristica Heterotaxy cases (n = 82) CA live births (n = 761,860) P value

Maternal age, years (%) 0.2198b

 <20 9 (10.98) 109766 (14.41)

 20–34 68 (82.93) 570,167 (74.85)

 ≥35 5 (6.10) 81,803 (10.74)

Maternal race/ethnicity, n (%) 0.0045b

 Non-Hispanic white 20 (24.69) 219,005 (28.90)

 African American 6 (7.41) 34,744 (4.59) 0.2247c

 Hispanic 41 (50.62) 445,308 (58.77) 0.1359d

 Asian 11 (13.58) 51,680 (6.82) 0.0158e

 Other 3 (3.70) 6936 (1.20)

Maternal education, years (%) <0.0001b

 <12 55 (67.90) 262,503 (35.14)

 12 14 (17.28) 242,396 (32.45)

 >12 12 (14.81) 242,189 (32.42)

Parity, n (%) 0.1376b

 Nulliparous 22 (26.83) 263,532 (34.63)

 Multiparous 60 (73.17) 497,421 (65.37)

Infant sex, n (%) 0.1162b

 Male 49 (59.76) 389,168 (51.08)

 Female 33 (40.24) 372,670 (48.92)

Infant gestational age (mean days ± SD) 266.07 ± 23.94 269.09 ± 16.19 0.2949f

Infant birth weight (mean grams ± SD) 2972.9 ± 743.7 3326.81 ± 568.74 <0.0001f

a
Demographic variables are not available for all cases and controls

b
P value determined using χ2 analysis

c
P value assigned independently to African American versus all other races

d
P value assigned independently to Hispanic versus all other races

e
P value assigned independently to Asian versus all other races

f
P value determined using t test
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Table 4

Distribution of associated cardiac defects categorized by the cases with and without copy-number variants of 

note

Additional heart defects (BPA 4 level) Infants with CNV findings
(N = 38)

Infants without CNV findings
(N = 44)

No.a %b No.a %b

Common truncus <5 <5

Transposition of great vessels 22 9.0 19 7.8

Tetralogy of Fallot <5 <5

Common ventricle 10 4.1 12 4.9

Ventricular septal defect 16 6.5   9 3.7

Ostium secundum atrial septal defect 16 6.5 23 9.4

Endocardial cushion defects 28 11.4 30 12.2

Cor biloculare <5 <5

Anomalous pulmonary valve 19 7.8 19 7.8

Tricuspid atresia/stenosis/insufficiency <5 <5

Congenital stenosis–aortic valve <5 <5

Insufficiency/bicuspid/other/unspecified aortic valve   7 2.9 10 4.1

Mitral atresia, stenosis, hypoplasia   6 2.5 <5

Congenital mitral insufficiency <5 <5

Hypoplastic left heart syndrome   5 2.0 <5

Other specified heart anomalies 28 11.4 35 14.3

Unspecified anomalies of heart <5 <5

Coarctation of aorta   7 2.9 <5

Other anomalies of aorta 19 7.8 21 8.6

Anomalies of pulmonary artery 12 4.9 13 5.3

Anomalies of great veins 35 14.3 32 13.1

To protect confidentiality, exact numbers were not reported for defects seen in less than five cases

a
Count is by number of defects. Cases may be counted more than once

b
Percentage of defects in each category
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